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Abstract 

The determination of the optimal transformation to 
superpose two sets of points has many applications 
to the analysis of structures of proteins and nucleic 
acids. A new formulation of this problem is presented, 
which reduces it to the unconstrained maximization 
of a function of a single variable. This method is 
currently being applied in investigations of common 
substructures of proteins. 

1. Introduction 

The superposition of two coordinate sets is the basis 
of a number of techniques for the analysis and 
comparison of molecular structures. Considerable 
effort has been made to develop fast algorithms 
(McLachlan, 1972; Diamond, 1976; Kabsch, 1976, 
1978; McLachlan, 1979, 1982; Mackay, 1984; Ken- 
Knight, 1984). 

Several etficient algorithms are known, and pro- 
grams based on them are already fast enough for 
calculations in which only a few superpositions are 
required. However, in searching two or more protein 
structures for common substructures, a very large 
number of superpositions are required to test all 
combinations of segments from each pair of struc- 
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tures. Such analyses can sometimes be organized to 
superpose a succession of related substructures, so 
that the optimal transformation determined for one 
superposition may be nearly optimal for the next. In 
this case, optimization methods make it convenient 
to apply the results of one calculation to speed up 
the next. The method described here, a development 
of those used by McLachlan (1972, 1982), has this 
feature. 

2. Statement of the problem 

This section follows McLachlan's analysis very 
closely (McLachlan, 1972; cf. Golub & Van Loan, 
1983). Let xi, i = 1 , . . . ,  N, and yi, i = 1 , . . . ,  N, be two 
sets of points in 3-space. We wish to superpose them 
by means of a rigid-body motion of the yi into the 
set y[ such that the sum of the squares of deviations 

N 
D =  E (x,-Y',) 2 

i=1 

is minimized. Any rigid-body motion in 3-space may 
be decomposed into a rotation and a translation. The 
optimal translation is that which brings the mean 
positions (colloquially, 'centers of gravity') of the two 
sets into coincidence. We therefore may assume 
without loss of generality that the mean positions of 
the two sets of points coincide at the origin. The 
problem is to determine the proper rotation matrix 
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R (R o real, R r =  R -~, det R = +1.0) such that 

D = ~(xi - Ryi) 2 
i 

is a minimum. 
o By rewriting D in the form 

D = Z ( x i -  Ryi) 7-. ( x i -  Ryi) 

-Z  (Ix,l=+ ly,I=)-Y  2xT. Ry,, 
i i 

in which we use the orthogonality property of rotation 
matrices: (Ryi) T . Ryi = yT. Yi; and recognizing that 
the first and second terms depend only on the original 
coordinate sets, independent of R, we see that the 
minimization of D is equivalent to the maximization 
of 

E=Y, xT.Ryi. 
i 

Explicitly, with xi = (x~l, xi2, x~3) and Yi -  
(Yii, Yi2, Yi3): 

E=~. k=l~" Xik.(Ryi)k 

3 3 

= Z Z Z [xikRkyo] 
i k = l  j = l  

3 3 
= ~ ~, Rkj ~ XikyO = trace (RA), 

k = l  j = l  i 

where Aik ---- ~ xuYik. A is called the correlation matrix. 

3. Computational methods 

Several computational approaches have been 
pursued: 

(1) Optimization techniques, in some cases 
specialized to make use of features of this particular 
problem (McLachlan, 1982). 

(2) Use of the polar decomposition or singular 
value decomposition of the correlation matrix. 

If A is a real nonsingular matrix, then A = UH, 
where U is a unique orthogonal matrix and H is 
Hermitian and positive definite (Diamond, 1976; 
Golub & Van Loan, 1983). Higham (1984) has 
proposed a fast algorithm to determine U and 
H. Suppose H =  Q-1DQ, where D- -d iag  di and 
d,->0. Then tr(RA) =tr(RUH) =tr(RUQ-IDQ) = 
tr(QRUQ-XD) =tr (VD),  where V =  QRUQ -~. But 
because d~ -> 0, max tr(RA) = tr D and the maximum 
is obtained if QRUQ -~= I, which is equivalent to 
R =  U r. 

If an orthogonal starting approximation V to the 
orthogonal matrix U is available, when we may apply 
the decomposition to VrA to produce WH, where 
W - 1 ,  and then U = VW. 

(3) Explicit solution of the least-squares problem 
using Lagrange multipliers (Kabsch, 1976,1978). This 
requires calculating the eigenvalues of ATA. 

Johnston (1982) has compared the numerical 
characteristics of some of these methods. 

4. Introduction of an explicit representation of the 
rotation matrix 

In this section we present an approach, based on an 
explicit representation of the rotation matrix, which 
reduces the problem to a minimization of a function 
of a single variable. 

Expressing the general three-dimensional rotation 
matrix R(l, m, n, O) as a function of the direction 
cosines l, m, n of the axis and the angle of rotation 
0, with l, m, n obeying the constraint 12+ m2+ n 2 = 1 
(Lomont, 1959), we can express the quantity E (see 
§ 2) in the following form: 

E = tr (Aa) - [tr(Aa) - t r  A] cos 0 + t r  (Ab) sin 0, 

where a and b are the 3 x 3 matrices 

(I 2 ml nl) IOm -n  _~0,I) 
a = ml m 2 m n ;  b= 0 . 

nI mn n 2 - t 

For any given direction cosines l, m and n, the 
maximum of this quantity (with respect to 0) is 

E = tr(Aa) + [(tr A a - t r  A)2+ (tr Ab)2] ~/2. 

Thus, given an axis of rotation, the determination of 
the optimal angle of rotation is immediate. We must 
maximize E with respect to the direction of the axis 
of rotation. Let fi =( lmn)  denote the unit vector along 

A A S  A 

some trial axis of rotation. Then tr Aa = nA n, and 
tr Ab = ft. p, where A s = ½(A T + A) and p = (A23 - A32, 
A 3 1 -  A13, A lE-A21)  • We can express E as 

E =firASfi+[(firASfi-tr A) 2 +(ft .  p ) 2 1 1 / 2  

o r  

E = F + IF  2 + t2lpl2] 1/2 + tr A, 

where F=firASfi-tr A, p/lpl, and t = f i .  ~. Here t 
represents the component parallel to the vector p of 
the unit vector along the axis of rotation. 

If ]p = 0, A is symmetric, and 0 = 0 or 180 °. In this 
case E(fi, 0 )=  n~"--s"-[fiASfi-tr A ] n  cos 0. For any fi, 
max E(fi, 0) = fiASfi+ ]fiASfi-tr A .  

max E(a, 0) = max {tr A, 2 max fiASfi-tr A} 
0,fi fi 

= max {tr A, 2A1 - t r  A}, 

where Aa is the largest eigenvalue of A s. If tr A >  
2A1 - tr A, cos 0 = 1, 0 = 0 and R = the identity matrix. 
If tr A < 2A1 - t r  A, cos 0 = -1 ,  0 = 180 °, and the axis 
of rotation is the eigenvector of A s corresponding to 
A1.  

If Ipl ~ 0, we want to solve the following: 

maximize max { F + (F  2 + t2lp]2) W2 -t- tr A}. 
- - l < t < l , f i . ~ = t  

Consider the maximization with respect to for 
any fixed t. The functionf(x) = x +  (x2+ c) ~/2, for any 
positive constant c, is monotonically increasing, since 
f '(x)=l+x(x2+c)-~/2>O. Therefore, given any 
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value of t, we can maximize E with respect to fi by 
maximizing F = firAsfi. Then if Fmax(t) = max firAsfi, 
subject to the constraints {fi[ = 1, ft. ~ = t, the problem 
can be stated: 

maximize { Fmax(t) + [ Fmax(t) 2 + t2[p[2] '/2 + tr A}. 
-l<_t_<l 

To remove the constraint on t, let t =  
(1-v2)/(l+v2). Then (1-t2)I/2=2v/(l+v2). Now 
define a right-handed coordinate system with its posi- 
tive x axis lying along p. We may use any such system, 
of which there is a family, the members of which 
differ by the rotation of the y and z axes around the 
vector p. A numerically safe way to construct one is 
as follows: Assuming that [p[ # 0 we define the axes 
Anew ei , i = 1, 2, 3, of the new coordinate system in terms 
of p and the axes ~7 ~, i =  1, 2, 3, of the original 

Anew coordinate system. Let e~ = ~ = p / [ p .  Find j such 
that^ p .  ~ ^new= ~,ld is the minimum, and set e2 
(P × e°ld)/ P × ei-A°ldll" Then set ~ew = ~ x e2̂ new. 

Let T be the matrix that multiplies the components 
of a vector expressed in the new coordinate system 
to give the components of the vector expressed in the 
original coordinate system. Observe that T is 
independent of t. The most general unit vector for 
which the component along p is t is - expressed in 
the new coordinate system - of the form: 

fi= / (1-v2)/(l +v 2) '~ 
/[2v/(1 + 7.)2)] COS ~ } .  

\[2v/(1 + v2)] sin ~o] 

Let S be the scaling matrix: 
S = / (  1 -/92)/(1 + 192) 0 0 

0 2v/(1 + v 2) 0 ,) 0 0 2v/(1 + v 2 

and let B = STTrASTS. Advantage can be taken, in 
the implementation of this method, of the fact that 
B is symmetric. 

Then 

F=fiasfi=(1 cos ~o sinq~)Bf 1~) 

~ COS . 

\sin 

To maximize this quantity, introduce another vari- 
able u such that 

cos ~ = (1 - u2)/(1 + u2), sin ~ = 2u/(1 + u2). 

Then, in terms of u, 

(1 + u2)2F ' (u)  = (B23+B32-B12-B21)u  4 

-2 (2B33-  2B22+ B12+ B21)u 3 

-6(B23 + B32)u 2 

+2(2B33 - 2 B 2 2 -  B12- B2,)u 

+(Bl3 + B31 + B23+ B32). 

Observe that (1 + u2)2F ' is a quartic polynomial in u. 
We therefore are led to suggest the following 

procedure for maximizing E(fi, t) subject to fi = 1, 
^ ^ 
n . p = t :  

Utilize a program for finding the maximum of a 
function of one variable, v. When this program calls 
for a function evaluation, use v to determine the 
matrix S and then the matrix B. From the elements 
of B, determine the coefficients of the quartic equation 
(1 + u2)2F'(u) = O. Solve this. For each real root com- 
pute F and choose the largest value. From this 
maximum value of F compute the corresponding 
value of E and return this as the value of the function 
of v that we seek to maximize. 

The equation F'= 0 might be solved in a closed 
form (Abramowitz & Stegun, 1965), possibly leading 
to further simplification of the problem. In particular, 
this might be useful to facilitate the analytic calcu- 
lation of dE~dr. Alternatively, advantage can be 
taken of the fact that the roots of the polynomial 
(1 + u2)F'(u) are continuous functions of v (House- 
holder, 1970). 

In two special cases there are explicit solutions for 
the maximum of F: (1) for t = 0  ( v =  1; the axis of 
rotation is perpendicular to p): 

Emax = Fo+ ]Fo- t r  AI, 
where Fo = ½( B22 + B33) + [ ( B22 - B33)2/4 + B23] 1/2. 
The corresponding value of u is tan{0-25x 
arc tan[2B23/(B22- B23)]}. 

(2) For t = 1 (v = 0, axis of rotation parallel to p): 

Emax = B1~ + [(B~ - t r  A) 2 + [p[2] 1/2. 

The corresponding value of u is undefined. 
These are useful in estimating a starting value of t 

with which to enter the optimization routine. 
When the maximum with respect to v is located, 

use the corresponding optimal value of u to calculate 

COS 

\ sin 

This determines the axis of rotation. The angle 
of rotation around this axis is given by 
arctan[fi, p / ( t r  A-firAsfi)] = -tlpl/Fmax. 

Specification of the axis and angle of rotation com- 
pletely determines the desired rotation matrix R. 
Because the formulation of the problem defines an 
explicit rotation around an explicit axis, there is no 
danger of inverting the hand of the structure. 

If all that we wish to compute is the minimum 
r.m.s, deviation of the superposed sets of points, it is 
unnecessary to compute the axis or angle of rotation. 

This algorithm has been implemented in a Fortran 
program, making use of programs from the Harwell 
subroutine library. In practice it is unnecessary to 
solve a quartic equation 'from scratch' for each value 
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of t, because the roots - the candidate values of u - 
are continuous functions of v, and indeed we have 
found that the optimum value of u varies very slowly 
with v. 

The work was supported in part by US National 
Science Foundation research grant PCM83-20171. 
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Abstract 

By using a Ge perfect crystal, the 422 X-ray reflection 
intensities have been measured across the Ge K 
absorption edge in the Laue case. A conspicuous 
temperature dependence has been observed in the 
ratio of the integrated diffraction intensities below 
and above the absorption edge, which is peculiar to 
an absorbing perfect crystal. This temperature depen- 
dence is much larger in the Laue case than in the 
Bragg case. 

Introduction 

When the integrated reflection intensities are 
measured as a function of X-ray energy, the ratio of 
the intensities below and above the absorption edge 
changes when the temperature of a perfect crystal is 
varied. The temperature dependence (we abbreviate 
it as 'the temperature effect' hereafter), which is not 
expected for a mosaic crystal, has been studied 
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theoretically by Kawamura & Fukamachi (1979) 
and experimentally by Fukamachi, Kawamura,  
Hayakawa, Nakano & Koh (1982). Kawamura & 
Fukamachi (1979) have studied the temperature effect 
theoretically by using the 733 reflection from a 
GaAs(111) perfect crystal in the Bragg case as a model 
across the K absorption edge of Ga. Fukamachi et 
al. (1982) have measured the 777 reflection intensities 
from I n S b ( l l l )  across the In K absorption edge for 
both a perfect and a mosaic crystal, and confirmed 
the temperature effect. In these two cases, the reflec- 
tion intensities in the Bragg case have been studied, 
although a similar or larger temperature effect may 
be expected in the Laue case. 

In the present paper, we report on the temperature 
effect in the Laue case by measuring 422 reflection 
intensities from a G e ( l l l )  perfect-crystal face. The 
integrated reflection intensities are measured by 
energy-dispersive X-ray diffractometry with a solid- 
state detector (SSD) (Fukamachi, Hosoya & 
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